SYNTHESIS OF CARBOCYCLIC 4'-C-HYDROXYMETHYL ANALOGUES OF AZIDODEOXYTHYMIDINE, DEOXYTHYMIDINE, DEOXYDIDEHYDROTHYMIDINE AND THYMIDINE CARBA ANALOGUE WITH FUSED OXETANE RING

Hubert Нर̌евавескर́ ${ }^{1, *}$ and Antonín Hol ${ }^{2}{ }^{2}$
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague 6, Czech Republic; e-mail: ${ }^{1}$ hubert@uochb.cas.cz, ${ }^{2}$ nochb@uochb.cas.cz

Received January 18, 2000
Accepted March 10, 2000

Tosylation of (\pm)-1-[trans-4-hydroxy-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimi-dine-2(1H),4(3H)-dione (1) and (\pm)-1-[cis-4-hydroxy-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (2) and treatment of the obtained 1-\{(1R*, $\left.3 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}\right)$ -4-hydroxy-3-(hydroxymethyl)-3-[(tosyloxy)methyl]cyclopentyl\}-5-methylpyrimidine$2(1 \mathrm{H}), 4(3 \mathrm{H})$-dione (6) and 1-\{(1R*,3S*,4R*)-4-hydroxy-3-(hydroxymethyl)-3-[(tosyloxy)-methyl]cyclopentyl\}-5-methylpyrimidine-2(1H),4(3H)-dione (9) with methanolic sodium methoxide gave 1-[(1R*,4S*,6S*)-4-hydroxymethyl-2-oxabicyclo[3.2.0]hept-6-yl]-5-methyl-pyrimidine-2(1H),4(3H)-dione (7) and 1-[(1R*,4S*,6R*)-4-hydroxymethyl-2-oxabicyclo-[3.2.0]hept-6-yl]-5-methylpyrimidine-2(1H),4(3H)-dione (10), respectively. Treatment of (\pm-1-\{cis-4-mesyloxy-3,3-bis[(trityloxy)methyl]cyclopentyl\}-5-methylpyrimidine-2(1H),4(3H)dione (11), which was prepared from 2 by tritylation and mesylation, with 1,8-diaza-bicyclo[5.4.0]undec-7-ene in dimethylformamide afforded after deprotection (\pm)-1-[4,4-bis-(hydroxymethyl)cyclopent-2-en-1-yl]-5-methylpyrimidine-2(1H),4(3H)-dione (14). Hydrogenation of $\mathbf{1 4}$ led to (\pm)-1-[3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)dione (15). (\pm-1-\{trans-4-M esyloxy-3,3-bis[(trityloxy)methyl]cyclopentyl \}5-methylpyrimidine$2(1 \mathrm{H}), 4(3 \mathrm{H})$-dione (17), which was prepared from 1, was converted to (1R*,9R*)-6-methyl-5-oxo-11,11-bis(trityloxymethyl)-2-oxa-4,8-diazatricyclo[7.2.1.0 $0^{3,8}$]dodec-3,6-diene (18). The compound 18 was deprotected and heated with lithium azide in dimethylformamide to give (\pm)-1-[trans-4-azido-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)dione (21).
Key words: Carbanucleosides; Carbocyclic nucleosides; 4'-C-Branched nucleosides; Cyclopentanes; Nucleosides; Pyrimidines.

Replacement of the oxygen in the sugar portion of the nucleoside with a methylene unit results in carbocyclic nucleoside anal ogues which show enhanced biostability. The discovery of the antibiotic and antitumor activity of the natural carbocyclic nucleosides aristeromycin and neplanocin A stimulated the search for other carbocyclic nucleoside analogues with bio-
logical activity. Later on, additional synthetic carbocyclic nucleosides with important therapeutic properties were discovered. Development in the area of synthetic approaches to carbocyclic nucleosides is the subject of several reviews ${ }^{1}$.
This communication is a continuation of our program aimed at the synthesis of 2'-deoxy-4'-C-substituted nucleosides and at structure-antiviral activity relationship studies ${ }^{2}$ and deals with the synthesis of racemic carba analogues of 2^{\prime}-deoxy-4'-C-(hydroxymethyl)nucleosides. The present paper concerns the synthesis of racemic carbocyclic 4'-C-hydroxymethyl analogues of 3^{\prime}-azido-3'-deoxy-, 3^{\prime}-deoxy-, and 3^{\prime}-deoxy- $2^{\prime}, 3^{\prime}$-didehydrothymidine and an analogue with fused oxetane ring in the position $3^{\prime}, 4^{\prime}$. The same oxetane derivative of thymidine inhibits HIV replication in A301 (Alex) cells with remarkably low bone marrow toxicity ${ }^{3}$. Most recently a racemic carbocyclic analogue of $2^{\prime}, 3^{\prime}$-didehydro-2', 3^{\prime}-dideoxy-4'-C-(hydroxymethyl)guanosine was synthesized ${ }^{4}$ by a multistep procedure from 2-aza-bicyclo[2.2.1]hept-5-en-3-one.

Since the separation of the starting stereoisomeric carbocyclic nucleosides $\mathbf{1}$ and $\mathbf{2}$ is difficult (cf. ref. ${ }^{2 h}$), a mixture of the isomers was tritylated (Scheme 1). The obtained mixture of trityl derivatives was easily separated

(i) $\mathrm{TrCl} /$ pyridine, 38% of $\mathbf{3}, 34 \%$ of $\mathbf{4}$; (ii) 80% aqueous $\mathrm{CF}_{3} \mathrm{COOH}, 92 \%$ of 1 and 94% of $\mathbf{2}$;
(iii) $\mathrm{TsCl} /$ pyridine, 20% of $\mathbf{5}, 68 \%$ of $\mathbf{6}, 17 \%$ of 8 and 69% of 9 ; (iv) $0.25 \mathrm{M} \mathrm{MeONa/MeOH}$,
53% of 7 (19\% of recovered 6), 33\% of 10 (25% of recovered 9)
Scheme 1
on silica gel to give pure (\pm)-trans isomer $\mathbf{3}(38 \%$ yield) and (\pm)-cis isomer 4 (34% yield). Treatment of the trityl derivatives with 80% aqueous trifluoroacetic acid afforded free nucleoside analogues $\mathbf{1}$ and $\mathbf{2}$ (cf. ref. ${ }^{2 h}$). Tosylation of the (\pm)-trans isomer 1 led to a mixture of the ditosyl derivative 5 (20% yield) and the monotosyl derivative 6 (68% yield) with hydroxy and (tosyloxy)methyl groups in cis position. The ditosyl derivative 8 (17% yield) and the monotosyl derivative 9 (69% yield) were obtained in the same manner from cis isomer 2. The greater reactivity of the 4^{\prime}-(hydroxymethyl) group was also observed in 4'-hydroxymethylthymidine3. Monotosylates 6 and 7 were treated with methanolic sodium methoxide giving compounds with fused oxetane rings 7 (53% yield) and 10 (33% yield), respectively. The starting monotosyl derivatives were also recovered from the reaction mixture: 19% of $\mathbf{6}$ and 25% of $\mathbf{9}$. This reaction is accompanied by the cleavage of the C-N bond. The positions of absorption bands in UV spectra of the oxetanes $\mathbf{7}$ and $\mathbf{1 0}$ remained virtually unchanged independently of pH whereas in alkaline medium, the absorption decreased: such pattern is characteristic of N^{1}-substituted uracil derivatives ${ }^{5}$. Using the same procedure, the analogue of 2^{\prime}-deoxyuridine with fused oxetane ring in the position $3^{\prime}, 4^{\prime}$ was prepared (cf. ref. ${ }^{2 e}$). In this case, cleavage of the $\mathrm{C}-\mathrm{N}$ bond was not observed.

Mesylation of the ditrityl derivative 4 and treatment of the obtained mesylate 11 with 1,8-diazabicyclo[5.4.0]undec-7-ene in dimethylformamide at $125{ }^{\circ} \mathrm{C}$ (Scheme 2) led to the cyclopentene derivative 13 (89% yield).

Scheme 2
Deprotection of $\mathbf{1 3}$ with 80% aqueous acetic acid afforded the free anal ogue 14. Hydrogenation of $\mathbf{1 4}$ over palladium on activated carbon gave the carbocyclic dideoxynucleoside 15 (81\% yield).

The ditrityl derivative 11 was deprotected with 80% aqueous trifluoroacetic acid and the obtained compound $\mathbf{1 2}$ was treated with sodium hydride in dimethylformamide giving unsaturated analogue 14 (24% yield) and the unsaturated hydroxymethyl derivative 16 (47% yield) instead of the expected oxetane 7. The oxetane $\mathbf{7}$ was not involved as an intermediate in this reaction, because it remained unchanged under the reaction conditions.

Mesylation of compound $\mathbf{3}$ and treatment of the obtained mesyl derivative 17 with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile at $60{ }^{\circ} \mathrm{C}$ (Scheme 3) afforded the anhydro derivative 18 (74% yield). The opening of 2, 3^{\prime}-bond with lithium azide in dimethylformamide at $150{ }^{\circ} \mathrm{C}$ resulting in a relatively high yield of 1-(3-azido-2,3-dideoxy-5-0-trityl- β-d-ribofuranosyl)5 -ethyluridine is described in the literature (see, e.g., ref. ${ }^{6}$). However, the reaction of the anhydro derivative 19 with lithium azide under described

17

(iii)

$$
\square \begin{aligned}
& \text { 18, } \mathrm{R}=\text { = trityl } \\
& \mathbf{1 9}, \mathrm{R}=\mathrm{H}
\end{aligned}
$$

(v) $\square \begin{aligned} & 20, R=A c \\ & 21, R=H\end{aligned}$
(i) $\mathrm{MsCl} /$ pyridine, 85%; (ii) DBU/acetonitrile, $60^{\circ} \mathrm{C}, 74 \%$; (iii) 80% aqueous $\mathrm{CF}_{3} \mathrm{COOH}, 83 \%$;
(iv) $1 . \mathrm{LiN}_{3} / \mathrm{DMF}, 150^{\circ} \mathrm{C}, 2 . \mathrm{Ac}_{2} \mathrm{O} / \mathrm{DMAP} / \mathrm{MeCN}, 17.5 \%$ of 14 and 49% of $\mathbf{2 0}$; (v) $\mathrm{MeONa} / \mathrm{MeOH}, 99 \%$

Scheme 3
conditions led to a complex unseparable mixture of products. The compound 19, which was obtained by deprotection of 18 with 80% aqueous trifluoroacetic acid, was treated with lithium azide in dimethylformamide at $150{ }^{\circ} \mathrm{C}$. Chromatography of products of the reaction afforded 17.5% of the unsaturated derivative 14 and the crude azido analogue 21. This product was acetylated and the obtained acetate $\mathbf{2 0}$ was easily purified by chromatography on silica gel. The free azido nucleoside analogue 21 was obtained by methanolysis of 20. The anhydro ring opening was not accompanied by N-1 to N-3 migration, which has been described for cleavage of some 2,2'-anhydronucleosides with hydrogen chloride and of 2,3'-anhydronucleosides with azide (see ref. ${ }^{7}$ and references therein), because infrared spectrum of the acetate $\mathbf{2 0}$ exhibits NH band at $3391 \mathrm{~cm}^{-1}$, in agreement with the literature data ${ }^{8}$ for $\mathrm{N}-1$ isomer. UV spectrum of the free azido derivative $\mathbf{2 1}$ was also characteristic of N^{1}-substituted uracil derivatives ${ }^{5}$.

In conclusion, new racemic carbocyclic 4'-C-hydroxymethyl analogues of azidodeoxythymidine, deoxydidehydrothymidine, deoxythymidine, and 1-[(1R*,4S*,6S*)-4-hydroxymethyl-2-oxabicyclo[3.2.0]h eptan-6-yl]-5-methyl-pyrimidine-2(1H),4(3H)-dione (7) (the carba analogue of the anti-HIV compound, thymidine derivative with $3^{\prime}, 4^{\prime}$-fused oxetane ring) were prepared. The synthesized compounds will be tested for antiviral activity.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. IR spectra were recorded on a Zeiss UR 20 spectrophotometer (wavenumbers in cm^{-1}) and UV spectra on a Unicam SP 8000 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra ($\delta, \mathrm{ppm} ; \mathrm{J}, \mathrm{Hz}$) were measured on a Varian XL-200 (200 MHz) instrument in hexadeuteriodimethyl sulfoxide with tetramethylsilane as internal standard. Column chromatography was performed on $30-60 \mu \mathrm{~m}$ silica gel (Service Laboratories of the Institute) and thin-layer chromatography (TLC) on Silufol UV 254 foils (Kavalier, Votice). Solvents were evaporated at 2 kPa and bath temperature $30-60{ }^{\circ} \mathrm{C}$; the compounds prepared were dried at 13 Pa and $50^{\circ} \mathrm{C}$.

> ($\pm)$-1-\{trans-4-Hydroxy-3,3-bis[(trityloxy)methyl] cyclopentyl\}-methyl pyrimidine 2(1H),4(3H)-dione $(\mathbf{3})$ and $(\pm)-1$-\{cis-4-hydroxy-3,3-bis[(trityloxy)methyl]cyclopentyl\}
> 5-methylpyrimidine-2(1H),4(3H)-dione (4)

A solution of a mixture of $\mathbf{1}$ and $\mathbf{2}\left(1.89 \mathrm{~g}, 7 \mathrm{mmol}\right.$; cf. ref. ${ }^{2 \mathrm{~h}}$) and triphenylmethyl chloride $(4.74 \mathrm{~g}, 17 \mathrm{mmol})$ in pyridine $(40 \mathrm{ml})$ was heated at $100^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated and the residue was partitioned between ethyl acetate (200 ml) and water (100 ml). The organic layer was separated, washed with water ($3 \times 100 \mathrm{ml}$), dried over sodium sulfate and the solvent was evaporated. Chromatography of the residue on silica gel (600 g) in toluene-ethyl acetate ($2: 1$) afforded $1.79 \mathrm{~g}(34 \%$ yield) of cis isomer 4 and 2.01 g (38% yield) of trans isomer $\mathbf{3}$ (both after crystallization from ethanol).

Isomer 3. M.p. 228-229 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5}$ (754.9) calculated: $79.55 \% \mathrm{C}, 6.14 \% \mathrm{H}$, $3.71 \% \mathrm{~N}$; found: $79.26 \% \mathrm{C}, 6.22 \% \mathrm{H}, 3.49 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.44 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.5$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.1$ (H-2a'); 1.54-1.63 m, $1 \mathrm{H}\left(\mathrm{H}-5 \mathrm{a}^{\prime}\right) ; 1.68-1.82 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 1.73 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{CH}_{3}\right) ; 2.02 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{~b}^{\prime}, 4^{\prime}\right)=9.2\left(\mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 3.00 \mathrm{~d}, 1 \mathrm{H}$ and $3.41 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ gem $=8.9\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $3.08 \mathrm{~d}, 1 \mathrm{H}$ and $3.42 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=9.2\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.14-420 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right) ; 4.65-4.83 \mathrm{~m}, 1 \mathrm{H}$ $\left(\mathrm{H}-1^{\prime}\right) ; 4.71 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(4^{\prime}, \mathrm{OH}\right)=4.6\left(4^{\prime}-\mathrm{OH}\right) ; 7.12 \mathrm{~s}, 1 \mathrm{H}(\mathrm{H}-6) ; 7.29 \mathrm{~m}, 30 \mathrm{H}(\mathrm{H}$-arom.); 11.16 s , $1 \mathrm{H}(\mathrm{NH})$.

Isomer 4. M.p. $265-266{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5}$ (754.9) calculated: $79.55 \% \mathrm{C}, 6.14 \% \mathrm{H}$, $3.71 \% \mathrm{~N}$; found: $79.32 \% \mathrm{C}, 6.27 \% \mathrm{H}, 3.60 \% \mathrm{~N}^{1}{ }^{1} \mathrm{H}$ NMR: $1.35-1.49 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2 \mathrm{a}^{\prime}, \mathrm{H}-5 \mathrm{a}^{\prime}\right)$; $1.68 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.75 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=4.9, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 5 \mathrm{a}^{\prime}\right)=14.2, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 1^{\prime}\right)=9.1\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 1.99 \mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{~b}^{\prime}, \mathrm{l}^{\prime}\right)=8.5, \mathrm{~J}\left(2 \mathrm{~b}^{\prime}, 2 \mathrm{a}^{\prime}\right)=13.1\left(\mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 2.90 \mathrm{~d}, 1 \mathrm{H}$ and $3.29 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=9.2\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $3.27 \mathrm{~d}, 1 \mathrm{H}$ and $3.49 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=8.0\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.91 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right) ; 4.60-4.76 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-\mathrm{l}^{\prime}\right)$; $5.11 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 4^{\prime}\right)=4.3\left(4^{\prime}-\mathrm{OH}\right) ; 7.22-7.41 \mathrm{~m}, 31 \mathrm{H}(\mathrm{H}-6, \mathrm{H}$-arom.); $11.16 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(\pm)-1-[trans-4-Hydroxy-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (1)

A solution of trityl derivative $\mathbf{3}(1.51 \mathrm{~g}, 2 \mathrm{mmol}$) in 80% aqueous trifluoroacetic acid (25 ml) was set aside at room temperature for 15 min . The solvent was evaporated and the residue was partitioned between ether (20 ml) and water (30 ml). The aqueous layer was separated, washed with ether ($2 \times 10 \mathrm{ml}$) and neutralized with Dowex 1 (HCO_{3}^{-}form). The ion exchanger was filtered off, washed with water and the combined filtrates were taken down giving 497 mg (92\%) of 1. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ (270.3) calculated: $53.32 \% \mathrm{C}, 6.71 \% \mathrm{H}, 10.36 \% \mathrm{~N}$; found: 53.10% C, $6.83 \% \mathrm{H}, 10.21 \% \mathrm{~N}$. The ${ }^{1} \mathrm{H}$ NMR spectra of 1 and compound prepared before ${ }^{2 \mathrm{~h}}$ were identical.
(\pm)-1-[cis-4-Hydroxy-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (2)

Using the same procedure as in the preparation of 1, trityl derivative $\mathbf{4}$ ($1.51 \mathrm{~g}, 2 \mathrm{mmol}$) was deprotected giving 510 mg (94%) of 2. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ (270.3) calculated: $53.32 \% \mathrm{C}$, 6.71\% H, 10.36\% N; found: 53.15\% C, 6.64\% H, 10.30\% N.

The ${ }^{1} H$ NMR spectra of $\mathbf{2}$ and compound prepared before ${ }^{2 h}$ were identical.
(\pm)-1- \{trans-4-Hydroxy-3,3-bis[(tosyloxy)methyl]cyclopentyl\}5-methylpyrimidine-
2(1H),4(3H)-dione (5) and 1-\{(1R*,3R*,4S*)-4-Hydroxy-3-(hydroxymethyl)-
3-[(tosyloxy)methyl]cyclopentyl\}5-methylpyrimidine-2(1H),4(3H)-dione (6)
A solution of 1 ($270 \mathrm{mg}, 1 \mathrm{mmol}$) and tosyl chloride ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$) in pyridine $(3.5 \mathrm{ml})$ was allowed to stand at room temperature for 5 h and then water ($50 \mu \mathrm{l}$) was added. After standing at room temperature for 10 min , the solvent was evaporated. Chromatography of the residue on a silica gel column afforded 110 mg (20\%) of ditosyl derivative 5 as a solid foam and 290 mg (68\%) of monotosyl derivative 6 (after crystallization from ethanol).

Racemate 5. For $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ (546.7) calculated: $57.13 \% \mathrm{C}, 5.53 \% \mathrm{H}, 5.12 \% \mathrm{~N}, 11.73 \% \mathrm{~S}$; found: 56.80% C, $5.44 \% \mathrm{H}, 4.88 \% \mathrm{~N}, 11.46 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.37 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.9$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.9\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.70-1.86 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2 \mathrm{~b}^{\prime}, \mathrm{H}-5 \mathrm{a}^{\prime}\right) ; 1.75 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 2.11 \mathrm{~m}, 1 \mathrm{H}$, $\mathrm{J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=6.8, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=7.7, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 5 \mathrm{a}^{\prime}\right)=14.7\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 2.43 \mathrm{~s}, 6 \mathrm{H}\left(2 \times \mathrm{CH}_{3}\right.$, tosyl); $3.88 \mathrm{~d}, 1 \mathrm{H}$ and $4.05 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=10.1\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.93 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.98 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right) ; 4.85 \mathrm{~m}, 1 \mathrm{H}, \Sigma \mathrm{J}=$ $35.4\left(\mathrm{H}-\mathrm{l}^{\prime}\right) ; 5.23 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 4^{\prime}\right)=4.3\left(4^{\prime}-\mathrm{OH}\right) ; 7.47 \mathrm{~d}, 2 \mathrm{H}$ and $7.73 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ (H-tosyl); $7.49 \mathrm{~d}, 2 \mathrm{H}$ and $7.75 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ (H-tosyl); $7.50 \mathrm{~s}, 1 \mathrm{H}(\mathrm{H}-6) ; 11.21 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

Racemate 6. M.p. $167-170{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(424.5)$ calculated: $53.76 \% \mathrm{C}, 5.70 \% \mathrm{H}$, $6.60 \% \mathrm{~N}, 7.55 \%$ S; found: $53.63 \% \mathrm{C}, 5.81 \% \mathrm{H}, 6.71 \% \mathrm{~N}, 7.39 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.31 \mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=10.2, \mathrm{~J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.7\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.70-2.15 \mathrm{~m}, 3 \mathrm{H}\left(2 \times \mathrm{H}-5^{\prime}, \mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 1.77 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=$ $0.9\left(\mathrm{CH}_{3}\right) ; 2.42 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$, tosyl); 3.33-3.46 m, $2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.93-4.07 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.02 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OTs}\right) ; 4.84-5.02 \mathrm{~m}, 2 \mathrm{H}\left(4^{\prime}-\mathrm{OH}, \mathrm{H}-1^{\prime}\right) ; 7.49 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ and 7.79 dd, $2 \mathrm{H}, \mathrm{J}=8.2,3.5$ (H-tosyl); $7.50 \mathrm{~s}, 1 \mathrm{H}$ (H-6); $11.20 \mathrm{~s}, 1 \mathrm{H}$ (NH).

> 1-[(12**,45*,65*)-4-Hydroxymethyl-2-oxabicyclo[3.2.0]hept-6-yl]-5-methylpyrimidine $2(1 \mathrm{H}), 4(3 \mathrm{H})$-dione $(\mathbf{7})$

A solution of $\mathbf{6}(212 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 0.25 m methanolic sodium methoxide (6 ml) was set aside at room temperature for 20 h and then Dowex $50\left(\mathrm{H}^{+}\right)$was added (to $\mathrm{pH} \approx 2$). The ion exchanger was filtered off, washed with methanol and the combined filtrates were neutralized with Dowex $1\left(\mathrm{HClO}_{3}^{-}\right.$form). The resin was filtered off, washed with methanol and the combined filtrates were evaporated. Chromatography of the residue on silica gel (20 g) in ethyl acetate-acetone-ethanol-water (19:3:2:1) gave $40 \mathrm{mg}(19 \%)$ of starting 6, 10 mg (16\%) of thymine, and $67 \mathrm{mg}(53 \%)$ of 7 (after crystallization from ethanol), m.p. 184-186 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (252.3) calculated: $57.13 \% \mathrm{C}, 6.39 \% \mathrm{H}, 11.10 \% \mathrm{~N}$; found: $57.09 \% \mathrm{C}, 6.59 \%$ H, 11.02\% N. UV (water): $\lambda_{\text {max }} 274 \mathrm{~nm}(\varepsilon 10500)$; $\left(0.1 \mathrm{~m} \mathrm{NaOH):} \lambda_{\text {max }} 272 \mathrm{~nm}(\varepsilon 7700)\right.$. ${ }^{1} \mathrm{H}$ NMR: $1.63-2.03 \mathrm{~m}, 4 \mathrm{H}\left(2 \times \mathrm{H}-5^{\prime}, 2 \times \mathrm{H}-7^{\prime}\right) ; 1.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 3.45-3.60 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $4.11 \mathrm{~d}, 1 \mathrm{H}$ and $4.54 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ gem $=5.8\left(2 \times \mathrm{H}-3^{\prime}\right) ; 4.90 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 7 \mathrm{a}^{\prime}\right)=3.1\left(\mathrm{H}-\mathrm{I}^{\prime}\right) ; 4.94 \mathrm{t}$, $1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.5\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.46 \mathrm{~m}, 1 \mathrm{H}, \Sigma \mathrm{J}=34.8\left(\mathrm{H}-6^{\prime}\right) ; 7.65 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.8(\mathrm{H}-6)$; $11.28 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(\pm-1-\{(cis-4-Hydroxy-3,3-bis[(tosyloxy)methyl]cyclopentyl\}-5-methylpyrimidine-2(1H),4(3H)-dione (8) and 1-\{(1R*,3R*,4苂)-4-Hydroxy-3-(hydroxymethyl)-
3-[(tosyloxy)methyl]cyclopentyl\}5-methylpyrimidine-2(1H),4(3H)-dione (9)
Using the same procedure as described in the preparation of tosylates $\mathbf{5}$ and $\mathbf{6}$, the trihydroxy compound $\mathbf{2}$ (270 mg , 1 mmol) was converted into ditosylate $\mathbf{8}(92 \mathrm{mg} ; 17 \%$) and monotosylate 9 ($295 \mathrm{mg} ; 69 \%$).

Racemate 8. For $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}$ (546.7) calculated: $57.13 \% \mathrm{C}, 5.53 \% \mathrm{H}, 5.12 \% \mathrm{~N}, 11.73 \% \mathrm{~S}$; found: 56.80% C, $5.44 \% \mathrm{H}, 4.88 \% \mathrm{~N}, 11.46 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.51 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.6$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.9\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.68-1.82 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-5 \mathrm{a}^{\prime}, \mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 1.76 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 2.18 \mathrm{ddd}, 1 \mathrm{H}$, $\mathrm{J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=5.5, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 5 \mathrm{a}^{\prime}\right)=14.0, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, \mathrm{l}^{\prime}\right)=7.9\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 2.41 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$, tosyl); $2.43 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{CH}_{3}\right.$, tosyl); $3.77-3.91 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right) ; 3.83 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.05 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.70-4.87 \mathrm{~m}$, $1 \mathrm{H}\left(\mathrm{H}-1^{\prime}\right) ; 5.45 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 4^{\prime}\right)=4.6\left(4^{\prime}-\mathrm{OH}\right) ; 7.46 \mathrm{~d}, 2 \mathrm{H}$ and $7.72 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ (H -tosyl); $7.50 \mathrm{~d}, 2 \mathrm{H}$ and $7.78 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ (H-tosyl); $7.55 \mathrm{~s}, 1 \mathrm{H}(\mathrm{H}-6) ; 11.21 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

Racemate 9. M.p. $188-189{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}(424.5)$ calculated: $53.76 \% \mathrm{C}, 5.70 \% \mathrm{H}$, $6.60 \% \mathrm{~N}, 7.55 \%$ S; found: $53.79 \% \mathrm{C}, 5.82 \% \mathrm{H}, 6.50 \% \mathrm{~N}, 7.63 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.40 \mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.5, \mathrm{~J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.1\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.68 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{a}^{\prime}, 4^{\prime}\right)=5.3 \mathrm{~J}\left(5 \mathrm{a}^{\prime}, 5 \mathrm{~b}^{\prime}\right)=14.1 \mathrm{l}, \mathrm{J}\left(5 \mathrm{a}^{\prime}, 1^{\prime}\right)=$ 7.9 (H-5a'); $1.77 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.83 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{~b}^{\prime}, 1\right)=8.6\left(\mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 2.29 \mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=$ 5.5, J $\left(5 \mathrm{~b}^{\prime}, 1^{\prime}\right)=8.7\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 2.40 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right.$, tosyl); $3.20 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=4.9\left(\mathrm{CH}_{2} \mathrm{O}\right)$; 3.94 ddd, $1 \mathrm{H}\left(\mathrm{H}-4^{\prime}\right) ; 4.09 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OTs}\right) ; 4.79-4.96 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-\mathrm{I}^{\prime}\right) ; 4.87 \mathrm{t}, 1 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; $5.22 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, 4^{\prime}\right)=4.3\left(4^{\prime}-\mathrm{OH}\right) ; 7.47 \mathrm{~d}, 2 \mathrm{H}$ and $7.78 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2$ (H-tosyl); $7.60 \mathrm{~s}, 1 \mathrm{H}$ (H-6); $11.20 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

1-[(1R*,4S*,6R*)-4-Hydroxymethyl-2-oxabicyclo[3.2.0]hept-6-yl]-5-methylpyrimidine-
2(1H),4(3H)-dione (10) 2(1H),4(3H)-dione (10)

Using the same procedure as in the preparation of the oxetane $\mathbf{7}$, tosylate $\mathbf{9}$ ($212 \mathrm{mg}, 0.5$ mmol) produced oxetane $\mathbf{1 0}(42 \mathrm{mg} ; 33 \%)$. Starting 9 ($53 \mathrm{mg} ; 25 \%$) was recovered and thymine ($22 \mathrm{mg} ; 35 \%$) was formed.

Racemate 10. M.p. $157-158{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (252.3) calculated: $57.13 \% \mathrm{C}, 6.39 \% \mathrm{H}$, $11.10 \% \mathrm{~N}$; found: $57.01 \% \mathrm{C}, 6.48 \% \mathrm{H}, 11.03 \% \mathrm{~N}$. UV (water): $\lambda_{\max } 275 \mathrm{~nm}(\varepsilon 10750$); (0.1 m

NaOH): $\lambda_{\max } 273 \mathrm{~nm}(\varepsilon 8200) .{ }^{1} \mathrm{H}$ NMR: $1.78 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.2\left(\mathrm{CH}_{3}\right) ; 1.99-2.26 \mathrm{~m}, 4 \mathrm{H}\left(2 \times \mathrm{H}-5^{\prime}\right.$, $\left.2 \times \mathrm{H}-7^{\prime}\right) ; 3.36-3.52 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.12 \mathrm{~d}, 1 \mathrm{H}$ and 4.47 d , $\mathrm{J}_{\text {gem }}=6.1\left(2 \times \mathrm{H}-3^{\prime}\right) ; 4.90 \mathrm{~m}, 1 \mathrm{H}$, $\Sigma \mathrm{J}=30.0\left(\mathrm{H}-6^{\prime}\right) ; 4.94 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.94 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 7 \mathrm{a}^{\prime}\right)=3.7, \mathrm{~J}\left(1^{\prime}, 7 \mathrm{bb}^{\prime}\right)=$ 4.3 (H-1'); $8.00 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2(\mathrm{H}-6) ; 11.23 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

(\pm)-1-\{cis-4-M esyloxy-3,3-bis[(trityloxy)methyl]cyclopentyl\}-5-methylpyrimidine-2(1H),4(3H)-dione (11)

Methanesulfonyl chloride ($1.24 \mathrm{ml}, 16 \mathrm{mmol}$) was added to a stirred solution of trityl derivative $4(3.02 \mathrm{~g}, 4 \mathrm{mmol})$ in pyridine (28 ml). After standing at room temperature for 5 h , water (1 ml) was added and, after standing for 10 min , the solvent was evaporated and the residue was partitioned between ethyl acetate (100 ml) and water (100 ml). The organic layer was washed with water ($3 \times 100 \mathrm{ml}$), dried over anhydrous sodium sulfate and evaporated. Chromatography of the residue on a column of silica gel (250 g) in ethyl acetatetoluene (2:3) afforded $2.97 \mathrm{~g}(89 \%)$ of mesylate 11. For $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ (833.0) calculated: $73.53 \% \mathrm{C}, 5.81 \% \mathrm{H}, 3.36 \% \mathrm{~N}, 3.85 \% \mathrm{~S}$; found: $73.25 \% \mathrm{C}, 5.92 \% \mathrm{H}, 3.17 \% \mathrm{~N}, 3.70 \% \mathrm{~S}$. ${ }^{1} \mathrm{H}$ NMR: $1.63 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.54-1.68 \mathrm{~m}, 1 \mathrm{H} ; 2.00-2.30 \mathrm{~m}, 3 \mathrm{H} ; 2.97 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right) ; 2.99 \mathrm{~d}$, 1 H and $3.28 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }} \approx 8\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.26 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.71-4.89 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-1^{\prime}\right) ; 4.82 \mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}\left(4^{\prime}, 5 \mathrm{a}^{\prime}\right) \approx \mathrm{J}\left(4^{\prime}, 5 \mathrm{~b}^{\prime}\right) \approx 6.1$ (H-4'); $7.29 \mathrm{~m}, 31 \mathrm{H}$ (H-arom., H-6); $11.26 \mathrm{~s}, 1 \mathrm{H}$ (NH).
(\pm)-1-[cis-3,3-Bis(hydroxymethyl)-4-(mesyloxy)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (12)

A solution of trityl derivative $\mathbf{1 1}$ ($833 \mathrm{mg}, 1 \mathrm{mmol}$) in 80% aqueous trifluoroacetic acid $(12 \mathrm{ml})$ was set aside at room temperature for 10 min . The solvent was evaporated and the residue was partitioned between ether (10 ml) and water (20 ml). The aqueous layer was separated, washed with ether ($2 \times 10 \mathrm{ml}$) and neutralized with Dowex $1\left(\mathrm{HCO}_{3}^{-}\right.$form). The ion exchanger was filtered off, washed with water and the combined filtrates were taken down. Crystallization of the residue from ethanol gave 320 mg (92%) of mesylate 12, m.p. $131-133{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ (348.4) calculated: $44.82 \% \mathrm{C}, 5.79 \% \mathrm{H}, 8.04 \% \mathrm{~N}, 9.20 \% \mathrm{~S} ;$ found: 44.80\% C, 6.04\% H, 7.80\% N, 8.95\% S. ${ }^{1} \mathrm{H}$ NMR: 1.73 dd, $1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=10.3$, $\mathrm{J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.1\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.93 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{~b}^{\prime}, 1^{\prime}\right)=8.6\left(\mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 2.17$ ddd, 1 H , $\mathrm{J}\left(5 \mathrm{a}^{\prime}, 4^{\prime}\right)=6.5, \mathrm{~J}\left(5 \mathrm{a}^{\prime}, 5 \mathrm{~b}^{\prime}\right)=13.1, \mathrm{~J}\left(5 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.5\left(\mathrm{H}-5 \mathrm{a}^{\prime}\right) ; 2.41-2.55 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 3.19 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right) ; 3.36 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.45 \mathrm{~d}, 1 \mathrm{H}$ and $3.54 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=10.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.23 \mathrm{brs}(\mathrm{OH}$ groups); $4.88 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(4^{\prime}, 5 \mathrm{~b}^{\prime}\right)=6.4\left(\mathrm{H}-4^{\prime}\right) ; 4.91 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-4) ; 7.59 \mathrm{~s}, 1 \mathrm{H}(\mathrm{H}-6) ; 11.24 \mathrm{~s}, 1 \mathrm{H}$ (NH).

(\pm)-1- $\{4,4$-Bis[(trityloxy)methyl]cyclopent-2-en-1-yl\}-methylpyrimidine-2(1H),4(3H)-dione (13)

A solution of mesylate $\mathbf{1 1}$ ($1.67 \mathrm{~g}, 2 \mathrm{mmol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.47 ml , 3 mmol) in dimethylformamide (17 ml) was heated at $125{ }^{\circ} \mathrm{C}$ for 6 h . The residue was partitioned between ethyl acetate (100 ml) and water (50 ml). The organic layer was separated, washed with water ($3 \times 50 \mathrm{ml}$), dried over anhydrous sodium sulfate and concentrated to a small volume. The crystalline product was filtered off to give 1.31 g (89%) of 13, m.p. 119-121 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ (736.9) calculated: 81.50\% C, $6.02 \% \mathrm{H}, 3.80 \% \mathrm{~N}$; found: $81.21 \% \mathrm{C}, 5.99 \% \mathrm{H}, 3.64 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.25 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{a}^{\prime}, 1^{\prime}\right)=6.1, \mathrm{~J}\left(5 \mathrm{a}^{\prime}, 5 \mathrm{~b}^{\prime}\right)=14.0$ ($\mathrm{H}-5 \mathrm{a}^{\prime}$); $1.58 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 2.04 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{~b}^{\prime}, \mathrm{l}^{\prime}\right)=8.5\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 3.01 \mathrm{~d}, 1 \mathrm{H}$ and $3.25 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=8.5$
$\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.08 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 5.36 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-\mathrm{l}^{\prime}\right) ; 5.88 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(3^{\prime}, 2^{\prime}\right)=5.5, \mathrm{~J}\left(3^{\prime}, 1^{\prime}\right)=1.9$ $\left(\mathrm{H}-3^{\prime}\right) ; 6.23 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2^{\prime}, 1^{\prime}\right)=2.0\left(\mathrm{H}-2^{\prime}\right) ; 6.85 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.9(\mathrm{H}-6) ; 7.30 \mathrm{~s}, 15 \mathrm{H}$ and 7.26 s , 15 H (trityl); $11.23 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(\pm)-1-[4,4-Bis(hydroxymethyl)cyclopent-2-en-1-yl]-5-methylpyrimidine-2(1H),4(3H)-dione (14)

A solution of the trityl derivative 13 ($1.11 \mathrm{~g}, 1.5 \mathrm{mmol}$) in 80% aqueous acetic acid was heated at $60^{\circ} \mathrm{C}$ for 2 h . The mixture was concentrated, the residue was washed with toluene $(2 \times 5 \mathrm{ml})$ and crystallized from methanol to obtain 215 mg (57%) of the racemic diol 14, m.p. 119-121 ${ }^{\circ} \mathrm{C}$. Column chromatography of mother liquors on silica gel (40 g) in ethyl acetate-acetone-ethanol-water (19:3:2 : 1) afforded additional 103 mg (27\%) of 14. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (252.3) calculated: $57.13 \% \mathrm{C}, 6.39 \% \mathrm{H}, 11.10 \% \mathrm{~N}$; found: $56.99 \% \mathrm{C}, 6.36 \% \mathrm{H}$, 11.02% N. ${ }^{1} \mathrm{H}$ NMR: $1.47 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{a}, 1)=5.9, \mathrm{~J}(5 \mathrm{a}, 5 \mathrm{~b})=13.8(\mathrm{H}-5 \mathrm{a}) ; 1.74 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)$; $2.18 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}(5 \mathrm{~b}, 1)=9.0(\mathrm{H}-5 \mathrm{~b}) ; 3.30 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.53 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}\right.$, $\mathrm{OH})=5.5$ and $3.49 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.1, \mathrm{~J}_{\text {gem }}=10.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.65 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=$ $5.5\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.71 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.3\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.53 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-1) ; 5.65 \mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}(3,2)=5.6, \mathrm{~J}(3,1)=2.0(\mathrm{H}-3) ; 5.91 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}(2,1)=2.0(\mathrm{H}-2) ; 7.38 \mathrm{~s}, 1 \mathrm{H}\left(\mathrm{H}-6^{\prime}\right) ; 11.21 \mathrm{~s}, 1 \mathrm{H}$ (NH).
(\pm-1-[3,3-Bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (15)
Pd/C (20 mg ; 10\%) was added to a solution of 14 ($76 \mathrm{mg}, 0.3 \mathrm{mmol}$) in methanol (2 ml) and the mixture was hydrogenated at $50^{\circ} \mathrm{C}$ and atmospheric pressure for 5 h . The solids were removed by filtration through Celite washed with a hot mixture of methanol-ethyl acetate ($1: 1 ; 5 \times 2 \mathrm{ml}$) and the combined filtrates were evaporated. Crystallization of the residue from methanol afforded 62 mg (81%) of racemic 15, m.p. 216-218 ${ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ (254.3) calculated: $56.68 \% \mathrm{C}, 7.14 \% \mathrm{H}, 11.02 \% \mathrm{~N}$; found: $56.61 \% \mathrm{C}, 7.12 \% \mathrm{H}$, 10.94% N. ${ }^{1} \mathrm{H}$ NMR: $1.28-1.83 \mathrm{~m}, 6 \mathrm{H}\left(2 \times \mathrm{H}-2^{\prime}, 2 \times \mathrm{H}-5^{\prime}, 2 \times \mathrm{H}-4^{\prime}\right) ; 1.78 \mathrm{~s}, 1 \mathrm{H}\left(\mathrm{CH}_{3}\right)$; $3.24 \mathrm{dd}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.0$, J = $1.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 3.33 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.0\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.60 \mathrm{t}$, $1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.0\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.61 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.0\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.66-4.84 \mathrm{~m}, 1 \mathrm{H}$ ($\mathrm{H}-1^{\prime}$) ; $7.57 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.8(\mathrm{H}-6) ; 11.18 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.
(\pm)-1-[3-(Hydroxymethyl)cyclopent-3-en-1-yl]-5-methylpyrimidine-2(1H),4(3H)-dione (16)
Sodium hydride ($160 \mathrm{mg}, 4 \mathrm{mmol} ; 60 \%$ dispersion) was added to a stirred solution of mesylate 12 ($348 \mathrm{mg}, 1 \mathrm{mmol}$) in dimethylformamide (5 ml). The mixture was stirred at room temperature for 2 h , then neutralized with acetic acid and evaporated. Chromatography of the residue on a silica gel column (35 g) in ethyl acetate-acetone-ethanol-water (100: $15: 6: 4)$ afforded 98 mg (47%) of $\mathbf{1 6}$ and 60 mg (24\%) of $\mathbf{1 4}$ (both after crystallization from ethanol).

Racemate 16. M.p. $192-195{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ (222.3) calculated: $59.45 \% \mathrm{C}, 6.35 \% \mathrm{H}$, 12.60% N; found: 59.45% C, $6.45 \% \mathrm{H}, 12.53 \% \mathrm{~N}$. UV (water): $\lambda_{\max } 276 \mathrm{~nm}(\varepsilon 10100)$; (0.1 m $\mathrm{NaOH}): \lambda_{\max } 274 \mathrm{~nm}(\varepsilon 8000) .{ }^{1} \mathrm{H}$ NMR: $1.75 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0\left(\mathrm{CH}_{3}\right) ; 2.29-2.45 \mathrm{~m}, 2 \mathrm{H}(2 \times$ $\mathrm{H}-5^{\prime}$); 2.61-2.80 m, $2 \mathrm{H}\left(2 \times \mathrm{H}-2^{\prime}\right) ; 3.99 \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}\left(\mathrm{CH}_{2}, \mathrm{OH}\right)=5.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.82 \mathrm{t}, 1 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.13 \mathrm{~m}, 1 \mathrm{H}, \mathrm{J}\left(1^{\prime}, 5 \mathrm{a}^{\prime}\right) \approx \mathrm{J}\left(1^{\prime}, 5 b^{\prime}\right) \approx 4.5, \mathrm{~J}\left(1^{\prime}, 2 \mathrm{a}^{\prime}\right) \approx \mathrm{J}\left(1^{\prime}, 2 \mathrm{~b}^{\prime}\right) \approx 9.0\left(\mathrm{H}-1^{\prime}\right) ; 5.55 \mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}\left(4^{\prime}, 5 \mathrm{a}^{\prime}\right)=\mathrm{J}\left(4^{\prime}, 5 \mathrm{~b}^{\prime}\right)=2.1\left(\mathrm{H}-4^{\prime}\right) ; 7.28 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0(\mathrm{H}-6) ; 11.22 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH})$.

Treatment of Oxetane Derivative $\mathbf{7}$ with Sodium Hydride
Sodium hydride ($32 \mathrm{mg}, 0.8 \mathrm{mmol} ; 60 \%$ dispersion) was added to a stirred solution of 7 ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) in dimethylformamide (1 ml). The mixture was stirred at room temperature for 2 h , then neutralized with acetic acid and evaporated. Chromatography of the residue on silica gel (5 g) in ethyl acetate-acetone-ethanol-water (100:15:6:4) afforded 48 mg (96\%) of the starting oxetane 7.
(\pm)-1-\{trans-4-M esyloxy-3,3-bis[(trityloxy)methyl]cyclopentyl\}5-methylpyrimidine-2(1H),4(3H)-dione (17)

Methanesulfonyl chloride ($1.24 \mathrm{ml}, 16 \mathrm{mmol}$) was added to a stirred solution of trityl drivative 3 ($3.02 \mathrm{~g}, 4 \mathrm{mmol}$) in pyridine (28 ml). After standing at room temperature for 5 h , water (1 ml) was added. After standing for 10 min , the solvent was evaporated and the residue was partitioned between ethyl acetate (100 ml) and water (100 ml). The organic layer was washed with water ($3 \times 100 \mathrm{ml}$), dried over anhydrous sodium sulfate and evaporated. Crystallization of the residue from ethanol afforded 2.83 g (85%) of the mesyl derivative 17, m.p. $185-185.5^{\circ} \mathrm{C}$. For $\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$ (833.0) calculated: $73.53 \% \mathrm{C}, 5.81 \% \mathrm{H}, 3.36 \% \mathrm{~N}$, 3.85\% S; found: 73.42% C, $5.92 \% \mathrm{H}, 3.28 \% \mathrm{~N}, 4.18 \% \mathrm{~S} .{ }^{1} \mathrm{H}$ NMR: $1.67 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=$ $10.0, \mathrm{~J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.1\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.75 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.98-2.17 \mathrm{~m}, 3 \mathrm{H}\left(2 \times \mathrm{H}-5^{\prime}, \mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 2.94 \mathrm{~s}$, $3 \mathrm{H}\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right) ; 3.06 \mathrm{~d}, 1 \mathrm{H}$ and $3.09 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=6.4\left(\mathrm{CH}_{2}\right) ; 3.35 \mathrm{~d}, 1 \mathrm{H}$ and $3.40 \mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}_{\text {gem }}=9.5\left(\mathrm{CH}_{2}\right) ; 4.71 \mathrm{~m}, 1 \mathrm{H}, \Sigma \mathrm{J}=38.8\left(\mathrm{H}-\mathrm{l}^{\prime}\right) ; 5.09 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(4^{\prime}, 5 \mathrm{a}^{\prime}\right)=\mathrm{J}\left(4^{\prime}, 5 \mathrm{~b}^{\prime}\right)=5.5\left(\mathrm{H}-4^{\prime}\right)$; $7.25-7.36 \mathrm{~m}, 31 \mathrm{H}$ (H-6, H-arom.); $11.22 \mathrm{~s}, 1 \mathrm{H}(\mathrm{HN})$.
(1R*,9R*)-6-M ethyl-5-oxo-11,11-bis(trityloxymethyl)-2-oxa-4,8-diazatricyclo-
[7.2.1.0 ${ }^{3,8}$]dodec-3,6-diene (18)
To a solution of the mesylate 17 ($1.67 \mathrm{~g}, 2 \mathrm{mmol}$) in acetonitrile (25 ml) 1,8-diazabicyclo-[5.4.0]undec-7-ene ($0.6 \mathrm{ml}, 4 \mathrm{mmol}$) was added. The mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 6 h , then cooled and the crystalline compound was filtered off, washed with acetonitrile, then with ether. It was obtained $1.09 \mathrm{~g}(74 \%)$ of $\mathbf{1 8}$, m.p. $300-302{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}$ (736.9) calculated: $81.50 \% \mathrm{C}, 6.02 \% \mathrm{H}, 3.80 \% \mathrm{~N}$; found: $81.21 \% \mathrm{C}, 5.87 \% \mathrm{H}, 3.65 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.32-1.15 \mathrm{~m}, 2 \mathrm{H}(2 \times \mathrm{H}-10) ; 1.75 \mathrm{brs}, 4 \mathrm{H}\left(\mathrm{CH}_{3}, \mathrm{H}-12 \mathrm{a}\right) ; 2.05 \mathrm{brd}, 1 \mathrm{H}, \mathrm{J}(12 \mathrm{~b}, 12 \mathrm{a})=12.8$ ($\mathrm{H}-12 \mathrm{~b}$); $2.69 \mathrm{~d}, 1 \mathrm{H}$ and $3.79 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=9.2\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 2.84 \mathrm{~d}, 1 \mathrm{H}$ and $3.39 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=$ $9.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.15 \mathrm{brs}, 1 \mathrm{H}(\mathrm{H}-1) ; 4.84$ brs, $1 \mathrm{H}(\mathrm{H}-9) ; 7.14 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J} \approx 1(\mathrm{H}-7) ; 7.20 \mathrm{~m}, 15 \mathrm{H}$ and $7.35 \mathrm{~m}, 15 \mathrm{H}(2 \times$ trityl).
(1R*,9R*)-11,11-Bis(hydroxymethyl)-6-methyl-5-oxo-2-oxa-4,8-diazatricyclo-
[7.2.1.0 ${ }^{3,8}$]dodec-3,6-diene (19)
A solution of trityl derivative 18 ($737 \mathrm{mg}, 1 \mathrm{mmol}$) in 80% aqueous trifluoroacetic acid $(10 \mathrm{ml})$ was set aside at room temperature for 10 min . The solvent was evaporated and the residue was partitioned between ether (10 ml) and water (20 ml). The aqueous layer was separated, washed with ether ($2 \times 10 \mathrm{ml}$) and neutralized with Dowex 1 (HCO_{3}^{-}form). The ion exchanger was filtered off, washed with water and the combined filtrates were taken down. Crystallization of the residue from methanol gave 210 mg (83%) of racemic anhydro derivative 19, m.p. $244-247{ }^{\circ} \mathrm{C}$. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$ (252.3) calculated: $57.13 \% \mathrm{C}, 6.39 \% \mathrm{H}$, $11.10 \% \mathrm{~N}$; found: $56.96 \% \mathrm{C}, 6.50 \% \mathrm{H}, 10.92 \% \mathrm{~N} .{ }^{1} \mathrm{H}$ NMR: $1.61 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}(12 \mathrm{a}, 9)=4.3$,
$\mathrm{J}(12 \mathrm{a}, 12 \mathrm{~b})=14.0(\mathrm{H}-12 \mathrm{a}) ; 1.75 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=0.9\left(\mathrm{CH}_{3}\right) ; 1.83 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}(12 \mathrm{~b}, 9)=2.4(\mathrm{H}-12 \mathrm{~b})$; $2.13 \mathrm{dt}, 1 \mathrm{H}, \mathrm{J}(10 \mathrm{a}, 1) \approx \mathrm{J}(10 \mathrm{a}, 9) \approx 1, \mathrm{~J}(10 \mathrm{a}, 10 \mathrm{~b})=13.1(\mathrm{H}-10 \mathrm{a}) ; 2.32 \mathrm{dt}, 1 \mathrm{H}, \mathrm{J}(10 \mathrm{~b}, 1)=$ $\mathrm{J}(10 \mathrm{~b}, 9)=3.1(\mathrm{H}-10 \mathrm{~b}) ; 3.22-3.50 \mathrm{~m}, 4 \mathrm{H}\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right) ; 4.39 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-9) ; 4.72 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-1$, $\mathrm{OH}) ; 4.91 \mathrm{brs}, 1 \mathrm{H}(\mathrm{OH}) ; 7.43 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2(\mathrm{H}-7)$.
(\pm)-1-[trans-4-Azido-3,3-bis(acetoxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (20)

A solution of the anhydro derivative 19 ($252 \mathrm{mg}, 1 \mathrm{mmol}$) and lithium azide ($490 \mathrm{mg}, 10$ mmol) in dimethylformamide (7 ml) was heated at $150{ }^{\circ} \mathrm{C}$ for 8 h . The solvent was evaporated and the residue was chromatographed on a silica gel column in ethyl acetate-acetone-ethanol-water (200:30:12:8) giving 198 mg of crude azido nucleoside 21 and 44 mg (17.5\%) of cyclopentyl derivative 14. To a solution of crude 21 in acetonitrile (3 ml), acetic anhydride (0.4 ml) and 4-(dimethylamino)pyridine (50 mg) were added and the solution was allowed to stand for 2 h at room temperature. Methanol (0.5 ml) was added and, after 10 min , the solvent was evaporated. Chromatography of the residue on a silica gel column in ethyl acetate-toluene (4:1) afforded $186 \mathrm{mg}(49 \%)$ of acetate 20. For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6}$ (379.4) calculated: $50.66 \% \mathrm{C}, 5.58 \% \mathrm{H}, 18.46 \% \mathrm{~N}$; found: $50.39 \% \mathrm{C}, 5.70 \% \mathrm{H}, 18.18 \% \mathrm{~N} . \operatorname{IR}$ (c $=$ 2\%, CHCl_{3}): $3391(\mathrm{NH}) ; 2$ 111, 1273 (N_{3}); 1741 (C=O, ester); 1 705, 1689 (C=O, thymine); 1 238, 1045 (C-O, ester). ${ }^{1} \mathrm{H}$ NMR: $1.68 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.8, \mathrm{~J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.7$ ($\mathrm{H}-2 \mathrm{a}^{\prime}$); $1.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right) ; 1.98-2.18 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-5 \mathrm{a}^{\prime}, \mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 2.05 \mathrm{~s}, 3 \mathrm{H}$ and $2.06 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 2.33 \mathrm{dt}, 1 \mathrm{H}, \mathrm{J}\left(5 \mathrm{~b}^{\prime}, 2^{\prime}\right)=\mathrm{J}\left(5 \mathrm{~b}^{\prime}, 4^{\prime}\right)=7.0, \mathrm{~J}\left(5 \mathrm{~b}^{\prime}, 5 \mathrm{a}^{\prime}\right)=14.9\left(\mathrm{H}-5 \mathrm{~b}^{\prime}\right) ; 4.06 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $4.10 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 4.90 \mathrm{~m}, 1 \mathrm{H}, \Sigma \mathrm{J}=35.0\left(\mathrm{H}-1^{\prime}\right) ; 7.58 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=0.8(\mathrm{H}-6) ; 11.25 \mathrm{~s}, 1 \mathrm{H}$ (NH).
(\pm-1-[trans-4-Azido-3,3-bis(hydroxymethyl)cyclopentyl]-5-methylpyrimidine-2(1H),4(3H)-dione (21)

A solution of diacetate $\mathbf{2 0}$ ($112 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 0.1 m methanolic sodium methoxide (2 ml) was allowed to stand for 2 h at room temperature. Neutralization with Dowex $50\left(\mathrm{H}^{+}\right)$and evaporation afforded 88 mg (99\%) of the azido nucleoside 21 as a solid foam. For $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ (295.3) calculated: $48.81 \% \mathrm{C}, 5.80 \% \mathrm{H}, 23.72 \% \mathrm{~N}$; found: $48.52 \% \mathrm{C}, 6.01 \% \mathrm{H}$, 23.41\% N. UV (water): $\lambda_{\max } 275 \mathrm{~nm}(\varepsilon 10400)$; (0.1 M NaOH): $\lambda_{\max } 273 \mathrm{~nm}(\varepsilon 7800)$. ${ }^{1}$ H NMR: $1.51 \mathrm{dd}, 1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{a}^{\prime}, 1^{\prime}\right)=9.6, \mathrm{~J}\left(2 \mathrm{a}^{\prime}, 2 \mathrm{~b}^{\prime}\right)=13.3\left(\mathrm{H}-2 \mathrm{a}^{\prime}\right) ; 1.78 \mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=1.0\left(\mathrm{CH}_{3}\right) ; 1.94 \mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}\left(2 \mathrm{~b}^{\prime}, 1^{\prime}\right)=7.7\left(\mathrm{H}-2 \mathrm{~b}^{\prime}\right) ; 1.90-2.28 \mathrm{~m}, 2 \mathrm{H}\left(2 \times \mathrm{H}-5^{\prime}\right) ; 3.40 \mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=4.9\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right) ; 4.23 \mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}\left(4^{\prime}, 5 \mathrm{a}^{\prime}\right)=6.5, \mathrm{~J}\left(4^{\prime}, 5 \mathrm{~b}^{\prime}\right)=7.8\left(\mathrm{H}-4^{\prime}\right) ; 4.67 \mathrm{t}, 1 \mathrm{H}, \mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=4.9\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.67 \mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}\left(\mathrm{OH}, \mathrm{CH}_{2}\right)=5.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.93$ pentet, $1 \mathrm{H}, \mathrm{J}=8.5\left(\mathrm{H}-1^{\prime}\right) ; 7.54 \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.0(\mathrm{H}-6) ; 11.20 \mathrm{~s}$, 1 H (NH).

The authors are indebted to Ms J. Sklenářová and Ms A. Sterecová for excellent technical assistance, to Ms M. Snopková for the ${ }^{1}$ H NMR measurements, and to the staff of the Analytical Laboratory of this Institute (Dr Pechanec, Head) for the elemental analyses. This study was supported by the Grant Agency of the Czech Republic (grant No. 203/97/0375).

REFERENCES

1. a) Borthwick A. D., Biggadike K.: Tetrahedron 1992, 48, 571; b) Agrofoglio L., Suhas E., Farese A., Condom R., Challand S. R., Earl R. A., Guedj R.: Tetrahedron 1994, 50, 10611; c) Crimmins M. T.: Tetrahedron 1998, 54, 9229.
2. a) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1993, 58, 409; b) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1993, 58, 1668; c) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1994, 59, 1654; d) Hřebabecký H., Buděšínský M., Masojídková M., Havlas Z., Holý A.: Collect. Czech. Chem. Commun. 1997, 62, 957; e) Hřebabecký H., Balzarini J., Holý A.: Collect. Czech. Chem. Commun. 1997, 62, 1114; f) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1997, 62, 1128; g) Hřebabecký H., Masojídková M., Holý A.: Collect. Czech. Chem. Commun. 1998, 63, 2044; h) Hřebabecký H., Holý A.: Collect. Czech. Chem. Commun. 1999, 64, 1485.
3. O-Yang C., Kurz W., Eugui E. M., McRoberts M. J., Verheyden J. P. H., Kurz L. J., Walker K. A. M.: Tetrahedron Lett. 1992, 33, 41.
4. Sharma P. K., Nair V.: Arkivoc 2000, Vol. 1, 26, 0007.
5. Sano M.: Chem. Pharm. Bull. 1962, 10, 320.
6. Dyatkina N. B., Kraevskii A. A., Herman G., von Janta-Lipinski M., Langen P., Yartseva I. V.: Bioorg. Khim. 1968, 12, 408.
7. Hřebabecký H., Holý A., De Clercq E.: Collect. Czech. Chem. Commun. 1990, 55, 1801.
8. Scannell J. P., Allen F. W.: J. Org. Chem. 1960, 25, 2143.
